Design and optimization of combustion chambers for gas turbine engines and power generators

R&D in the field of combustion chambers:

  • Design, development and optimization of gas turbine combustion chambers
  • Simulation of combustion of conventional fuels and biofuels in combustion chambers of aviation gas turbine engines and power turbines
  • Numerical CFD modeling, design of optimized CFD models for combustion chambers on liquid fuel
  • Software development for combustor design (GTE)
  • Simulation and software development for effective heat transmission simulation  through the wall of the combustion chamber
  • Software development for effective simulation of low-emission combustion of bio-fuels
  • In-house software to study the parameters of chemical kinetics at the level of one computing cell (Open FOAM)
  • Experimental evaluation, testing
  • Design and manufacture of experimental combustor test rigs

Research projects:

  • Research on new combustion chamber concept C(P)DT“, (2004-2010, MIT Tandem, project No. FT-TA5/073)
  • FES -  “Research and development of flexible power supply system converting primary biomass energy and alternative fuels“, (2009-2012, MIT – TIP1, project No.FR-TI1/073
  • ESPOSA -   „Efficient Systems and Propulsion for Small Aircraft“,  WP2.3 Efficient Combustion Concept (2011-2015, EC – 7FP EU, project No. 284859)
  • Project – Turbine engine (A3)“, (2013-2016, TAČR-ALFA, project No. TA03011285)
  • VTMAP – “Development of combustion system of small gas turbine engine for alternative fuels“, (2013-2016, TAČR – ALFA3, project No.TA03011285)
  • “Technologies  for efficient power supply industry of 21st century”, partial objective 3 (2018-2022, institutional funding MIT via “DKRVO”)

Contact person:

Ing. Jan Kubata, Head of Engines department, VZLU
Tel: +420 225 115 232, e-mail: